BRIEF COMMUNICATION

Hydrothermal Synthesis and Characterization of NH₄Sn₂(PO₄)₃

Yaohua Xu, Shouhua Feng, and Wenqin Pang

Key Laboratory of Inorganic Hydrothermal Synthesis, Department of Chemistry, Jilin University, Changchun 130023, The People's Republic of China

Received November 12, 1993; in revised form March 17, 1995; accepted March 23, 1995

 $NH_4Sn_2(PO_4)_3$ has been synthesized hydrothermally from the $NH_3-SnO_2-P_2O_5-H_2O$ system, and characterized by X-ray powder diffraction, differential thermal analysis-thermogravimetric analysis, and Raman and IR spectroscopy. © 1995 Academic Press, Inc.

 $MSn_2(PO_4)_3$ (M = Li, Na, K, Tl, Ag, Rb), which has a NASICON-type structure (space group R3C) with a three-dimensional network of PO₄ tetrahedra cornershaped with SnO₆ octahedra, has been prepared previously by solid-state reactions (1). However, there have been no reports of a hydrothermal synthesis of NH₄SN₂(PO₄)₃ so far. Here we report a novel synthesis method, hydrothermal crystallization for the synthesis of NH₄Sn₂(PO₄)₃.

Hydrothermal crystallization of $NH_2Sn_2(PO_4)_3$ was carried out in a stainless steel autoclave with a Teflon liner under autogenous pressure. $SnO_2(AR)$, 85% orthophosphoric acid, and $(NH_4)_3PO_4$, and water were mixed in the molar ratio $0.8H_3PO_4$: $1.6SnO_2: 3(NH_4)_3PO_4$ in the Teflon liner. The autoclave was sealed and heated in an oven at 250°C for 5–7 days. After cooling, the product was filtered, washed with distilled water, and dried at ambient temperature.

The crystalline product was identified by means of X-ray powder diffraction pattern of the product (Fig. 1) recorded with a Rigaku D/max-IIIA diffractometer using Cu $K\alpha(\lambda = 1.5418)$ radiation, which is similar to that of NaSn₂(PO₄)₃ (2). The product is free of impurities. It could be indexed on the basis of a hexagonal unit cell with a = 8.330(1) Å and c = 23.90(5) Å. The indexed data are shown in Table 1. The Raman spectrum (see Fig. 2) was recorded on a Ramanor SPEX 1403 double spectrometer with an argon-ion laser (488.0-nm line, 100 mW). The spectrum is unique and quite characteristic of NH₄Sn₂(PO₄)₃ with three groups of absorption bands at 50–400 cm⁻¹, 400–700 cm⁻¹, and 900–1100 cm⁻¹, which are attributed to external vibrations, PO₄ bending, and

stretching vibrations (3). The IR spectrum (Fig. 3) shows absorption bands at 400–700 cm⁻¹ and 900–1250 cm⁻¹, which are attributed to PO₄ bending and stretching vibrations, and absorption bands at 1430 cm⁻¹ and 3100–3300 cm⁻¹, which are attributed to NH₄ bending and stretching vibrations (4, 5). DTA–TGA (differential thermal analysis–thermogravimetric analysis) shows that NH₄Sn₂(PO₄)₃ synthesized hydrothermally was different from NaSn₂(PO₄)₃, which was stable at 1200°C (Fig. 4). NH₄Sn₂(PO₄)₃ gives off NH₃ at 769°C. After being calcined for 3 hr at 800°C, the XRD pattern shows that the product

TABLE 1 Indexed X-Ray Powder Diffraction Data of Rhombohedral NH₄Sn₂(PO₄)₃

h	k	1	$d_{\rm obs}$ (Å)	$d_{\rm cal}$ (Å)	<i>I/I</i> ₀
0	1	2	6.177	6.176	52
1	0	4	4.602	4.602	71
1	1	0	4.165	4.165	94
1	1	3	3.680	3.691	51
0	2	4	3.088	3.088	54
1	1	6	2.878	2.879	100
1	0	8	2.738	2.760	4
2	1	4	2.480	2.481	17
0	3	0	2.404	2.405	27
3	0	2	2.338	2.357	4
3	0	3	2.304	2.302	4
2	0	8	2.276	2.301	3
2	1	7	2.108	2.131	2
2	2	0	2.082	2.083	10
0	3	6	2.058	2.059	19
0	2	10	1.992	1.992	16
3	1	2	1.987	1.987	6
1	3	4	1.896	1.897	13
2	2	6	1.845	1.846	26
2	1	10	1.800	1.797	26
3	0	9	1.744	1.783	2
3	1	8	1.670	1.662	5
2	2	9	1.630	1.638	10
4	1	0	1.582	1.574	17

FIG. 1. X-ray powder diffraction pattern of the product.

FIG. 2. Raman spectrum of the product.

is a mixture of SnP_2O_7 and SnO_2 . The whole change may be the following reaction:

$$NH_4Sn_2(PO_4)_3 \cdot 1.7H_2O \rightarrow NH_4Sn_2(PO_4)_3 \rightarrow$$

 $NH_3 + 1.5 SnP_2O_7 + \frac{1}{2}SnO_2 + \frac{1}{2}H_2O.$

In summary, by using the hydrothermal crystallization method, $NH_4SN_2(PO_4)_3$, which has considerable thermal stability at temperatures lower than 760°C, has been syn-

FIG. 3. IR spectrum of the product.

FIG. 4. DTA-TGA curve for the product.

thesized and the pure phase is easily obtained at lower reaction temperature.

REFERENCES

- 1. M. Louis Neel, C. R. Seances Acad. Sci. Ser. C 282, 245 (1976).
- 2. H. Y.-P. Hong, Mater. Res. Bull. 11, 173 (1976).
- 3. P. Tarte, Spectrochim. Acta Part A 42, 1009 (1986).
- 4. K. Byrappa, J. Mater. Sci. 20, 1419 (1985).
- 5. A. Clearfield, Mater. Res. Bull. 19, 219 (1984).